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Abstract

In this work, a set of nonlinear equations of motion for a coupled axial and transverse vibration of a tower subjected to

end tension is derived using Hamilton’s principle. The in-plane fluid forces are represented by the Morison equation. The

tower is modeled as an elastic beam subjected to end tension with only in-plane motions due to random wave loadings. The

dynamic response of the tower is analyzed for various end tensions by the finite difference method. The effects of

parameter variations such as an increase in significant wave height, an increase in the constant end tension, and

harmonically varying end tension are analyzed both for a reduced model and for an actual tether.

It was observed that at low tension, the axial motion is mainly induced by geometry while at higher tension, the axial

motion is mainly due to elongation. Analysis of a 260m tendon showed that increasing the significant wave heights

increased the amplitude of transverse response, while the magnitude of axial response remained almost the same. The

bending stress in the tendon decreases with an increase in tension due to decreased transverse displacement, but the total

stress in the tendon increases with an increase in end tension. The magnitude of transverse displacement could be kept

within specific limits by constantly varying the end tension.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Due to urbanization, the production and consumption of oil and other petroleum products have been
rapidly increasing over the years. This has led to the scarcity of easily retrieved oil. As a result, oil producers
are motivated to go to deeper ocean to extract oil and other resources. This interest in deep water drilling has
led to the in-depth study and analysis of deep water structures, like the Tension Leg Platform (TLP), that are
more adaptive to deep waters [1]. TLPs are compliant structures consisting of a pontoon, columns and a deck,
and are vertically moored at each corner by tendons. Each tendon is pre-tensioned so that it does not go slack
due to variations in the extreme ocean environment. A schematic diagram of a typical TLP is shown in Fig. 1.

A large number of TLPs have been built in the Gulf of Mexico in recent years. The tension in the tendons is
a function of the environmental conditions under which the structure must operate. TLPs are available for use
in water depths of up to 6000 ft. An example is Anadarko’s TLP in the Marco Polo field in the Gulf of Mexico.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic diagram of tension leg platform.
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It is the deepest TLP in the world at 1311m (4300 ft) water depth and is designed to process 120,000 barrels of
oil and 400 million cubic feet of natural gas per day. The project cost was approximately $210 million.

Due to such huge investments, there is interest in the study of the dynamic responses of such structures
under various loads, leading to improved performance and increased design lives.

The dynamic response of offshore structures is a very complex phenomenon. They are governed by
equations of motion that are highly nonlinear and depend on both time and space. Study of such structures
often begins by idealization, using beam models of various sophistication subjected to waves and other
loadings. Some studies are based on the simplest single-degree-of-freedom (dof) model that assume the
coupling between the transverse and axial motion to be negligible, while a majority of the studies are more
general. Due to a wide variety of applications in engineering, the transverse vibration of beams subjected to
axial loads has been studied in depth.

Bokaian [2,3] studied the effect of a constant axial force on natural frequencies and mode shapes of a
uniform single-span beam. Luo [4] investigated the eigenproperties of the lateral vibration of an axially loaded
infinite beam subjected to a harmonically varying concentrated transverse force at the center.

Jain [5] analyzed the dynamic response of a TLP to deterministic first-order wave forces. The study involved
the response due to varying tension in the cable produced by hydrodynamic drag forces. Parametric studies
were performed for different values of pretension and it was concluded that the natural period for surge, sway
and yaw did not cause resonance as it was well above the natural frequency of external loads. The heave
frequency of oscillations of the TLP, however, was close to that of the frequently occurring wave frequency,
leading to large tension in the tether and the possibility of resonance. It was observed that the heave motion,
although small, was not insignificant and the fluctuation of tether tension was of much concern from the
fatigue point of view. Neglecting the coupling between various degrees of freedom could lead to a highly
underestimated heave response.
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Ahmad [6] studied the coupled responses of TLPs under the influence of random waves in long crested seas
retaining the nonlinearities due to drag force, variable submergence, large deformation and randomly
varying tether tension. The study showed that one of the factors that influences the overall response is the
pretension in the tethers. The heave response and the tether tension are critically affected by the coupling
between degrees of freedom. Instantaneous fluctuations in tether tension are a source of nonlinearity and are
of great concern from the fatigue point of view. Variable submergence causes fluctuations in the axial force of
the tether, thus contributing to the nonlinearity of TLP dynamics and significantly increasing the surge and
heave responses.

Takahashi and Konishi [7] studied the nonlinear vibration of both horizontal and inclined sagged cables
supported at the ends. They observed that the cable behaved like a hardening spring in the case of nonlinear
free vibration.

Triantafyllou and Howell [8] showed that the dynamics of a perfectly elastic linear or nonlinear cable
constituted an ill-posed problem when the tension becomes negative at any point along the cable. To change
the system to a well-posed problem, the bending stiffness has to be included in the analysis even if it is very
small.

Virgin and Plaut [9] studied the effects of static axial loads on the forced vibration of a beam by subjecting it
to a harmonically varying transverse distributed load. Their study revealed that as the axial load increases, the
resonant amplitude of the central deflection increases and the corresponding resonant forcing frequency
decreases. The response amplitude grew quickly as the axial load approached the buckling load.

Dong et al. [10] investigated the vortex-induced transverse nonlinear oscillation of a tether by subjecting it
to parametric excitation of a frequency equal to the natural frequency of the system. The equation of motion
of a single dof nonlinear model was used. It was observed that the system became unstable for small values of
the damping and lift coefficients. For moderate damping and lift coefficients, there were multiple equilibrium
positions, and for sufficiently large values of the coefficients, the regions of multiple solutions vanish. The
stable solution of the system converges to a limit cycle. The beating phenomenon increases with the detuning
parameter, but chaotic behavior was not observed.

In order to understand the three-dimensional response of the TLP in a better way, Han and Benaroya [11]
modeled the structure both as a rigid body and as an elastic member and compared their dynamic responses.
The study revealed that the fundamental frequency of response obtained from both models matched, and
rotating elliptical paths were observed when viewed from the top. The elastic model showed subharmonics of
order 1/2 and 1/3 when the transverse force is applied in only one direction. The displacement in the
perpendicular direction remained almost unaffected. A comparison of linear and nonlinear responses of a
compliant tower to random waves was done by Han and Benaroya [12].

Mekha et al. [13] explored the implications of tendon modeling on the overall response of TLPs. Three
different models of tendons were used: the first, a massless elastic spring with constant lateral stiffness, the
second, an elastic spring with time-varying axial forces and one-third of tendon mass lumped at the point of
attachment, and the last one, a flexural beam with time-varying axial forces. Their study showed that the
amplitude of the surge motion varied linearly with significant wave height but was not affected by the
nonlinearity due to varying axial forces or by water depth, and so the simplest model can be used if only the
surge motion amplitude is to be predicted. It was also shown that the mean horizontal drift was influenced by
the variations in the hydrodynamic forces, wave height and water depth of tendon but was unaffected by
variations in the tendon axial forces. All three models showed that the tendon forces varied linearly with the
wave height, wave frequency and water depth.

Patel and Park [14] investigated the combined axial and transverse response of tethers of a tensioned
buoyant platform. The tether is modeled as a simply supported beam under the action of combined axial and
lateral forces. In addition, TLP tethers at low tensions were studied by Patel and Park [15]. It was concluded
that the mean tension in the tethers could be decreased to increase the payload over the conventional design of
TLP by using the Mathieu stability charts.

Another paper by Patel and Park [16] dealt with the tether response to short duration tension loss. The
governing equations of tether lateral motion for short-term tension loss were derived and solved both
numerically and analytically to obtain an envelope of compressive axial loads against the duration of its
action. This information was used to maintain acceptable levels of stress in the tether under all circumstances.
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Their study showed that the tether could be designed to withstand a momentary tension loss due to extreme
sea conditions.

Han and Benaroya [17] analyzed the free response of a compliant structure in vacuum and water.
Hamilton’s principle was used to derive the equations of motion and the corresponding boundary conditions.
The transverse and axial responses were nonlinearly coupled. The study revealed that the fundamental
frequency of axial motion was twice that of the corresponding value of the fundamental frequency of
transverse motion, and this was geometrically induced. It was also found that due to the nonlinear coupling
between the axial and transverse displacements, the fundamental frequency of vibration varies with the initial
condition. In another paper [18], the forced response of the same structure was analyzed.

The work of Han and Benaroya are the basis of current study. In their earlier work [17,18], they derived the
nonlinear coupled equations of motion and analyzed the response for various cases of loadings. However,
their study did not include the end tension in the analysis. In the current study, a set of nonlinear equations of
motion for a coupled axial and transverse vibration of a tether subjected to end tension is derived using
Hamilton’s variational approach. The in-plane fluid forces are represented by the Morison equation. The
random waves are characterized by the Pierson–Moskowitz power spectrum and are converted to time domain
using Borgman’s method. The equations of motion are solved numerically using a finite difference method.
The influence of tension on the dynamic behavior of the structure is analyzed. How the structure responds to
changes in end tension, and the variation of the stress occurring in the tether due these changes, are studied
here.
2. Mathematical formulation: coupled axial and transverse vibration with end tension

Much work has been done on the subject of transverse vibration of beam with axial forces. The general
formulation for such a problem is studied in Refs. [19–21]. The purpose of this study is to explore the
coupled axial and transverse vibration of the tower with applied end tension. Fig. 2 shows a simplified
model of a single tether of a TLP. The tower is modeled as an elastic beam with length L and mass M at its
free end. It is assumed to be extensible and confined only to the x–y plane. It has a linear elastic torsional
spring with a spring constant K at the lower end and is subjected to an applied tensile force F tðx; tÞ at the
upper end. The in-plane transverse load is due to the waves and is approximated using the Morison
equation. The equations of motion and the corresponding boundary conditions are derived using Hamilton’s
variational approach. The response of the tower is analyzed under various tensions (see Table 1 for a list of
nomenclature).

The total kinetic energy of the system T sys is due to the kinetic energy of the beam Tbeam and that of the
point mass Tm. This is composed of the translational kinetic energy and the rotational kinetic energy,

T sys ¼
1

2

Z L

0

rAðð _u2 þ _v2Þ þ rIð_v0Þ2Þdxþ
1

2
Mpð _u

2ðL; tÞ þ _v2ðL; tÞÞ,

where u is the axial displacement and v the transverse displacement.
The strain energy of the system is due to the elastic deformation of the beam and the rotation of the

torsional spring at the base of the tower,

Vbeam ¼
1

2

Z L

0

EAðxÞ u0 þ
1

2
ðv0Þ2

� �2
þ EIðxÞ½v00ðx; tÞ�2

( )
dx.

The strain energy stored in the spring is given by

Vs ¼
1
2 Ky2,

where y is the angle of twist of the spring. By the small angle approximation, the angle of twist can be
approximated by the first spatial derivative of the transverse deflection, v0ðx; tÞ. Then,

Vs ¼
1
2

K ½v0ðx; tÞ�2jx¼0 ¼
1
2

K ½v0ð0; tÞ�2.
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Fig. 2. Schematic diagram of tower with end tension.
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The total strain energy is then obtained by adding the two equations:

V sys ¼
1

2

Z L

0

EAðxÞ u0 þ
1

2
ðv0Þ2

� �2
þ EIðxÞ½v00ðx; tÞ�2

( )
dxþ

1

2
K ½v0ð0; tÞ�2.

The Lagrangian of the system is then

Lsys ¼ T sys � V sys

¼
1

2

Z L

0

rAð _u2 þ _v2Þ þ rIð_v0Þ2 � EAðxÞ u0 þ
1

2
ðv0Þ2

� �2"

�EIðxÞ½v00ðx; tÞ�2
#
dxþ

1

2
Mp½ _u

2ðL; tÞ þ _v2ðL; tÞ� �
1

2
K ½v0ð0; tÞ�2.
2.1. Generalized forces

In this section, the generalized forces acting on the system are obtained. In an ocean environment there are a
number of forces acting on the tower, such as the force due to wave, wind, current, wave slamming, among
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Table 1

Nomenclature

Symbol Description Units

d Depth of water m

f iðx; tÞ Transverse fluid force N

g Acceleration due to gravity m=s2

t Time s

u Axial tower displacement m

_u Axial tower velocity m/s

v Transverse tower displacement m

_v Transverse tower velocity m/s

W x Wave velocity in x direction m/s

W y Wave velocity in y direction m/s

At Tower cross-section area m2

Af Cross-section of the displaced volume of the fluid m2

Ca Added mass coefficient dimensionless

Cd Drag coefficient dimensionless

Cm Inertia coefficient dimensionless

Di Inner diameter of the tower m

Do Outer diameter of the tower m

E Young’s modulus Pa (N=m2)

Ft Tensile force along beam axis N

Hs Significant wave height m

Iz Moment of inertia about the z-axis m4

K Torsional spring constant Nm/radian

Mp End mass kg

y Angle of twist of the spring Radians

rt Density of the tower kg=m3

rf Fluid density kg=m3

o Frequency rad/s

s Stress N=m2
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other forces. In this study only the forces due to waves are considered. As the diameter of the cylinder is small
compared to the wavelength of the incident wave, Morison’s equation is used to model the in-plane fluid forces
per unit length [22]. If Qðx; tÞ and Pðx; tÞ represent generalized transverse and longitudinal forces, respectively,
then the virtual work is given as

dw ¼
1

2

Z L

0

½Qðx; tÞdvþ Pðx; tÞdu�dx,

where du and dv represent the virtual longitudinal and transverse displacements, respectively.
The generalized longitudinal force Pðx; tÞ is due to gravity, buoyancy, and the tensile force acting along the

axis,

Pðx; tÞ ¼ pðx; tÞ þ F tðx; tÞ,

where

pðx; tÞ ¼ ðrf Af � rAtÞg for 0oxpd,

¼ � rAtg for doxpL.

Af represents the area of fluid displaced by the tower, At represents the area of tower and Ftðx; tÞ represents
the tensile force along the axis. These forces are assumed to be always acting along the axis of beam element
due to the small angle assumption (Fig. 3).
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The transverse generalized forces Qðx; tÞ acting on the system in an ocean environment is represented by the
Morison equation,

Qðx; tÞ ¼ 1
2

Cdrf DoðW y þ _uv0 �W xv0 � _vÞjW y þ _uv0 �W xv0 � _vj

þ 1
4

Cmprf D2
oð
_W y � _W xv0Þ � 1

4
Caprf D2

oð€v� €uv0Þ, ð1Þ

where W y and W x are the wave velocities in y and x directions, _W y and _W x are the wave accelerations in y

and x directions, Cd is the drag coefficient, Cm is the inertia coefficient, Ca is the added mass coefficient, rf is
the fluid density, and Do is the outer diameter of the tower. Note that the relative velocity between the fluid
and the tower is considered here. Structural damping is not used in the analysis.

The wave velocities are determined using random wave theory, and characterized by the Pierson–Mosko-
witz power spectrum, as described by Chakrabarti [23] and converted to the time domain using Borgman’s
method. It can be shown that the wave velocities are given by

W yðx; y; tÞ ¼
Hs

4

ffiffiffiffi
2

P

r XP

p¼1

ōp

cosh k̄px

sinh k̄pd
cosðk̄py� ōptþ DÞ, (2)

W xðx; y; tÞ ¼
Hs

4

ffiffiffiffi
2

P

r XP

p¼1

ōp

sinh k̄px

sinh k̄pd
sinðk̄py� ōptþ DÞ, (3)

where Hs is the significant wave height, D is the random phase angle between 0 and 2p, and

ōp ¼
op þ op�1

2
; k̄p ¼ kðōpÞ for p ¼ 1; . . . ;P.

op represents the pth angular frequency, kp is the pth wavenumber. The zeroth frequency o0 equals zero, and
oP is chosen so that most of the area under the Pierson–Moskowitz spectrum is contained between o0 and oP:
The frequencies in between, that is, o1 to oP�1, are chosen such that there is equal area under each segment of
the spectral curve [24]. Therefore, op is given by

op ¼
B

lnðP=pÞ þ ðB=o4
pÞ

 !1=4

for p ¼ 1; . . . ;P� 1,

where B is a constant and is defined in terms of the significant wave height,

B ¼
4Ao

H2
s

,

Ao ¼ 0:0081g2, and g is the acceleration due to gravity.
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The wave accelerations are obtained by taking the time derivatives of Eqs. (2) and (3),

_W yðx; y; tÞ ¼
Hs

4

ffiffiffiffi
2

P

r XP

p¼1

ō2
p

coshðk̄pxÞ

sinhðk̄pdÞ
sinðk̄py� ōptþ DÞ,

_W xðx; y; tÞ ¼ �
Hs

4

ffiffiffiffi
2

P

r XP

p¼1

ō2
p

sinhðk̄pxÞ

sinhðk̄pdÞ
cosðk̄py� ōptþ DÞ.

These velocities and accelerations are substituted into Eq. (1) for the generalized transverse force.

2.2. Equations of motion and the boundary conditions

Once the Lagrangian has been formulated and the virtual work determined, these are substituted into
Hamilton’s principle and varied,

d
Z t2

t1

Lsys dtþ

Z t2

t1

dW dt ¼ 0,

d
1

2

Z t2

t1

Z L

0

rAð _u2 þ _v2Þ þ rIð_v0Þ2 � EA u0 þ
1

2
ðv0Þ2

� �2
� EI ½v00�2

" #
dxdt

þ
1

2
d
Z t2

t1

Mp½ _u
2ðL; tÞ þ _v2ðL; tÞ� �

1

2
K ½v0ð0; tÞ�2

� �
dt

þ
1

2

Z t2

t1

Z L

0

½Qðx; tÞdvþ Pðx; tÞdu�dt ¼ 0.

This can be simplified by assuming uniform beam properties, and applying the condition that the variations
at the end times are zero, we obtain the two nonlinear coupled governing equations of motion,

rA €u� ½EAtðu
0 þ 1

2
ðv0Þ2Þ�0 ¼ Pðx; tÞ, (4)

rAt €v� ½EAtðu
0 þ 1

2
ðv0Þ2Þv0�0 � rIð€v0Þ0 þ ½EIv00ðx; tÞ�00 ¼ Qðx; tÞ, (5)

with the corresponding general boundary conditions

Mp €uðL; tÞduþ EAðu0 þ 1
2
ðv0Þ2ÞdujL0 ¼ 0, (6)

½½EIv00�0 � rI €v0 � EAtðu
0 þ 1

2
ðv0Þ2Þv0�dvjL0 �Mp €vðL; tÞdv ¼ 0, (7)

EIv00ðx; tÞdv0jL0 þ Kv0ð0; tÞdv0ð0; tÞ ¼ 0. (8)

Primes denote partial derivatives with respect to x; and overdots denote partial derivatives with respect to t.
For the problem being considered, the tower is uniform, elastically restrained at x ¼ 0, and free at x ¼ L,

thus, the boundary conditions reduce to

uð0; tÞ ¼ 0; vð0; tÞ ¼ 0, (9,10)

Kv0ð0; tÞ � EIv00ð0; tÞ ¼ 0, (11)

jMp €uþ EAtðu
0 þ 1

2
ðv0Þ2ÞjX¼L ¼ 0, (12)

jEIv000 � rI €v0 � EAtðu
0 þ 1

2
ðv0Þ2Þv0 �Mp €vjX¼L ¼ 0, (13)

EIv00ðL; tÞ ¼ 0. (14)

The first two boundary conditions imply that the lower end of the beam (x ¼ 0; y ¼ 0) has no transverse or
longitudinal displacements. The third boundary condition states that the moment at the restrained end is
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resisted by the torsional spring, of spring constant K . The fourth and fifth boundary conditions express the
force balance in the transverse and longitudinal directions, respectively. The last boundary condition implies
that the beam cannot resist a moment at x ¼ L.

Similar equations of motion and boundary conditions are obtained by Yigit and Christoforou [25], and Han
and Benaroya [24].

3. Numerical results and discussions

Equations of motion (4) and (5), and boundary condition (9–14), are discretized using a second-order
central difference approximation. The length of the tower L is divided by N nodes placed at equal distances
h ¼ L=N along its length with the first node at X ¼ h and the Nth node is at X ¼ L. This yields a system of 2N

second-order differential equations. Each of these in turn is expressed as two first-order differential equations,
resulting in a system of 4N first-order ordinary differential equations. The general equation of central
difference method gives

v00ðnÞ ¼ ½vðnþ 1Þ � 2vðnÞ þ vðn� 1Þ�=2h.

So,

v00ð0Þ ¼ ½vð1Þ � 2vð0Þ þ vð�1Þ�=2h,

0 ¼ ½vð1Þ � 2vð0Þ þ vð�1Þ�=2h

¼ ½vð1Þ � 0þ vð�1Þ�=2h

and vð�1Þ ¼ vð1Þ: By the same method the values of the fictitious nodes at the other boundary ðx ¼ LÞ can
be evaluated.

The system is solved for the independent variables using MATLAB, applying the appropriate initial
conditions.

4. Response of a 1.27m beam model to various end tensions

The beam is taken to have zero initial conditions, implying that it is initially straight and upright, and has no
initial velocity. Fourteen nodes are used for the computational model. The properties of the system are given
in Table 2. The hollow tower is composed of aluminum, to match the properties of an in-house experiment.
The values of the inertia coefficient Cm and the drag coefficient Cd represent the average value encountered in
practice. The tower is subjected to random wave loads in the transverse direction. The peak angular frequency
opeak of the Pierson–Moskowitz spectrum is 2 rad/s, which corresponds to a significant wave height of
Hs ¼ 0:3957m.
Table 2

Beam and fluid properties

Parameters Values

rt 2770kg=m3

rf 999kg=m3

Do 0:0254m
Di 0:022m
L 1:27m
E 73� 109 Pa

d 1:05m
Cm 1:5
Cd 1

Ca 1

Hs 0:3957m
syield 96:5� 106 Pa
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Fig. 4. Response of the tower with zero end tension: (a) axial tip displacement, (b) transverse tip displacement.
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Fig. 4 shows the response of the tower with no end tension. The maximum transverse displacement is
0.3598m and the maximum absolute axial displacement is 0.0510m. The maximum stress in the tower is
13.35MPa. The response of the tower is then analyzed for different values of tension. The tower is subjected to
constant values of tension that are multiples of the buoyancy force B : 5B; 10B; 15B; 20B; 25B; 30B; 35B; 50B

and 100B:
The overall trace of the response remains similar, but both the transverse and the axial displacements

decrease as the tension is increased. When there is no tension, the axial displacement is mainly induced due to
geometry. As the tension increases, the geometrically induced axial displacement decreases. Further increase in
tension causes the axial displacement to be mainly due to elongation. Also, the frequency of axial vibration
increases from 0.1464 to 0.1953Hz as the tension increases from 0B to 100B. This increase in frequency is
expected with an increase in the end tension. Figs. 5 and 6 show that for very large tensions, there is a very
high frequency oscillation superimposed on the larger motion.

From Table 3, it is observed that the maximum stress is 13.35MPa when there is no tension. As the
transverse displacement is large, the bending stress in the tower is large, which contributes to higher maximum
stress. As the tension is increased, the maximum stress occurring in the tower initially decreases. This is
because an increase in tension causes a decrease in transverse displacement, resulting in smaller bending stress,
and hence smaller total stress. It can be seen from Table 3 that when the tension in the tower is 30B, the
maximum tension in the tower has started to increase. The reason for this is that although the bending stress is
reduced due to a decrease in transverse motion, larger tension in the tower causes larger axial stress, increasing
the total stress occurring in the beam.
4.1. Response of a 260 m tether to wave loading

In this section, the response of a TLP model with structural properties listed in Tables 4 and 5 are presented.
These values are based on the technical report Guidelines for Offshore Structural Reliability Analysis [26]. The
TLP model has four columns and pontoons supported by four tethers at each corner. It has a total
displacement of 200,000 tons. The mean water depth is 325m. In the current study, the response of one of the
tethers subjected to random wave loads is analyzed. The total tether pretension is 25,000 tons. As there are a
total of 16 tethers, the displacement and the pretension are assumed to be equally distributed to each tether.
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Fig. 6. Response of the tower with end tension T ¼ 100B: (a) axial tip displacement, (b) transverse tip displacement.
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Fig. 5. Response of the tower with end tension T ¼ 50B: (a) axial tip displacement, (b) transverse tip displacement.
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A representative response of the system to stochastic wave forces with different significant wave heights is
shown in Fig. 7. Each tether is subjected to a constant end tension of 1562.5 tons. This end tension is kept
constant during the analysis. The figure shows oscillation about the vertical equilibrium position. As can be
expected, increasing the significant wave height increases the amplitude of transverse response. This in turn
increases the maximum stress occurring in the system. The values of maximum stress for significant wave
heights of 9, 12, 15 and 20m are shown in Table 6.
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Table 4

Dimensions of a tension leg platform

Displacement 200,000 tons

Water depth 325m

Number of tethers 16

Vertical distance between mean water line to top attachment point of tether 55m

Center line distance between columns 78m

Column outer diameter 28.5m

Draft 60m

Pontoon breadth 14.25m

Pontoon height 13.0m

Table 5

Tether geometry

Length 260m

Drag diameter 1.0m

Buoyancy diameter 1.0m

Tether thickness 0.03m

Pretension per tether 1562.5 tons

Axial stiffness, EA 1:92� 107 kN

Bending stiffness, EI 2:26� 106 kNm2

Mass 0.718 tons/m

Spring stiffness, K 100kNm/deg

Horizontal distance from center TLP to top attachment point of tether 69.40m

Vertical distance between mean water line to top attachment point of tether 55m

Yield stress 358MPa

Table 3

Maximum stresses and displacements for various end tensions

Tension Maximum Maximum absolute Maximum absolute

stress (MPa) axial displacement (m) transverse displacement (m)

0B 13.35 0.0510 0.3598

5B 9.74 0.0260 0.2575

10B 8.17 0.0158 0.2002

15B 7.17 0.01105 0.1637

20B 6.50 0.0075 0.1380

25B 6.46 0.0056 0.1190

30B 6.51 0.0043 0.1043

35B 6.98 0.0034 0.0928

50B 7.32 0.0019 0.0696

100B 11.7 0.00055 0.0376
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The maximum stress occurring in the tethers is well below the yield stress. Due to the possibility of high
fatigue damage in the tethers, the stress in the tethers has to be kept to a minimum. It is found that the
transverse displacement increased significantly due to an increase in significant wave heights, but the axial
response does not increase substantially. The reason behind this appears to be that a major portion of the axial
displacement is caused by tension at the end and only a small portion of it is geometrically induced by
transverse motion. As the end tension is kept constant, the axial displacement is not much affected.

Representative power spectral density plots of axial and transverse displacements are shown in Figs. 8 and
9. As can be seen, there are peaks at 3.95Hz in the axial displacement plot and at 0.0366Hz in the transverse
displacement plot, representing the two fundamental frequencies of vibration.
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Table 6

Maximum stress for different values of significant heights

Significant wave height (m) Maximum stress (MPa)

9 84.63

12 84.76

15 90.55

20 117.80
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Fig. 7. Tip response to a random wave with significant wave height Hs ¼ 12m: (a) axial tip displacement, (b) transverse tip displacement.
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Fig. 8. Power spectral density plot of axial displacement for Hs ¼ 9m.
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Fig. 9. Power spectral density plot of transverse displacement for Hs ¼ 9m.
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4.1.1. Effect of varying the end tension on the response of the tower

The next logical step is to examine the response of the tower for different constant end tensions. The
tower is subjected to random waves, with a significant wave height of Hs 15m. Fig. 10 shows the response of
the tower when the end is not subjected to any tension. As such, the axial displacement is mainly induced
geometrically and is negative. It is interesting to see that when there is no end tension, the transverse
displacements increase with time. This leads to an increase in stress in the structure with time. The
maximum bending stress occurring in the structure is 132.82MPa and the maximum total stress is 136.68MPa.
Clearly, increases in displacement and stress are undesirable in a TLP. One way to decrease this is to increase
the end tension.

Next, the tether is subjected to a constant end tension of 1562.5 tons. The significant wave height is kept
constant at Hs ¼ 15m to compare the results with previous calculations where the tower was not subjected to
any tension. Fig. 11 shows the response of the tower to random wave loads. As expected, the number of
transverse oscillation cycles is more for a tether under tension than without tension. Due to the constant end
tension, there is elongation of the tether and the axial displacement is mainly positive. The absolute values of
the axial and transverse displacements decrease as tension increases. This is because an increase in tension
causes an increased bending stiffness that reduces the transverse displacements and hence the axial
displacements.

From Fig. 11 it can be seen that when tension in the tether is 1562.5 tons, the maximum transverse
displacement is 0.8495m and the maximum axial displacement is 0.0551m. The number of cycles of transverse
displacement in 2000 s is about 16 and the number of cycles of axial displacement is about 1578 for the same
duration. The maximum stress in the tether is 90.53MPa and the maximum bending stress is 45.49MPa.

To better understand the effect of tension, the same model is subjected to different constant end tensions.
When the tension is increased to 3125 tons, which is twice the initial pretension, the maximum transverse
displacement is reduced to 0.3884m. This is because increasing the tension increases the stiffness and helps to
reduce the transverse displacements. The maximum axial displacement almost doubled when the value of the
end tension is doubled. This is because higher tension leads to larger axial stretch, which in turn leads to larger
axial displacement. The number of cycles of transverse displacement in 2000 s increased to about 47 while the
number of cycles for axial displacement remained approximately the same as before. The maximum stress in
the tether increased to 163.58MPa.
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Fig. 10. Tip response to a random wave with significant wave height Hs ¼ 15m and zero end tension: (a) axial tip displacement, (b)

transverse tip displacement.
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Fig. 11. Tip response to a random wave with a significant wave height Hs ¼ 15m and an end tension of 1562.5 tons: (a) axial tip

displacement, (b) transverse tip displacement.
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The maximum bending stress and the maximum total stress occurring in the tether is tabulated for several
cases in Table 7. In all the cases, the maximum total stress is below the yield stress, which is 358MPa. It is
observed that at low tension, the axial stress in the tether is low and the bending stress is very high, resulting in
large total stress. As the tension increases to 1562.5 tons, the axial stress in the tether increases slightly,
whereas the bending stress in the tether decreases to a large extent, leading to decreased total stress. With
further increase in tension, although there is reduction in the bending stress due to reduced transverse
displacement, the total stress in the tether starts to increase due to large axial stress. This can be seen from the
last two cases in Table 7.
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Fig. 12. Power spectral density of axial displacement for zero end tension.

Table 7

Variation of bending stress and total stress for various end tensions

Tension (tons) Maximum bending stress (MPa) Maximum total stress (MPa)

0 132.82 136.68

1562.5 45.49 90.53

3125 31.69 163.56

4687.5 31.10 242.88
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Figs. 12 and 13 show representative power spectral density plots of the axial displacement. As can be seen
from Fig. 12, when there is no tension, the peaks occur at lower frequencies. As the tension in the tether
increases, the peaks shift to the right, that is, peaks occur at higher frequencies. There is a consistent peak at
about 4Hz for tethers with tension, corresponding to the fundamental frequency of axial response.

The spectral density plots of the transverse displacements also show that as the tension increases, the peaks
occur at higher frequencies. This was expected as higher tension in beams result in higher sets of frequencies.
Figs. 14 and 15 show representative power spectral densities of transverse displacement.
4.1.2. Response of the tower to varying end tension

Sometimes it is desirable to restrict the transverse displacement of the tower within a particular limit. This
can be achieved by either increasing the constant end tension or by constantly varying the tension with time
depending on the feedback from the transverse position of the tower tip. One drawback of increasing the end
tension in the tether is that it leads to higher total stresses. Larger tension increases the chances of failure of the
tether by elongation.

Initially the tether is subjected to a constant end tension of 1252.5 tons. Depending on the magnitude and
slope of the transverse displacement, the tension is either increased or decreased by 5% of the total tension, to
lower the transverse tip displacement. Fig. 16 shows the response of the tower to a constantly varying end
tension. Fig. 17 shows the tether subjected to a constant end tension of 1252.5 tons. All the parameters except
the end tension are kept constant in both analyses. The significant wave height in both cases is Hs ¼ 15m.
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Fig. 14. Power spectral density of transverse displacement for zero end tension.
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Fig. 13. Power spectral density of axial displacement for 1562.5 tons end tension.
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It can be seen from Fig. 16 that by varying the end tension the magnitude of transverse displacement can be
kept within the limits of �0:6m, but the magnitude of the axial displacement increases considerably. There is a
clear trade-off.

4.1.3. Response of the tower to harmonically varying end tension

Next, the responses of a system to a harmonically varying end tension are analyzed. The end tension is of
the form Tðx; tÞ ¼ To � S cosot, where To is a constant axial tension, S is the time-varying axial force



ARTICLE IN PRESS

0.15

0 500 1000 1500 2000
-0.05

0

0.05

0.1

Time (s)

A
xi

al
 T

ip
D

is
pl

ac
em

en
t (

m
)

0 500 1000 1500 2000

-0.5

0

0.5

Time (s)

T
ra

ns
ve

rs
e 

T
ip

D
is

pl
ac

em
en

t (
m

)

(b)

(a)

Fig. 16. Axial and transverse tip response to a random wave with significant wave height Hs ¼ 15m and varying end tension: (a) axial tip

displacement, (b) transverse tip displacement.
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Fig. 15. Power spectral density of transverse displacement for 1562.5 tons end tension.
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amplitude, and o is the frequency of parametric excitation. The results are analyzed for the significant wave
height Hs ¼ 15m.

Figs. 18 and 19 show the range of responses to a range of forcing frequencies. The forcing frequency is
varied from 6 to 15 rad/s in increments of 3 rad/s. As can be seen from the figures, only the axial response is
affected by changing the external forcing frequency. There seems to be little effect on the magnitude and shape
of the transverse response of the beam due to changes in the forcing frequency. Increasing the frequency
though tends to decrease the amplitude of heave response.
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Fig. 18. Axial and transverse tip response of the tether for an axial forcing frequency of o ¼ 6 rad=s: (a) axial tip displacement,

(b) transverse tip displacement.
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Fig. 17. Axial and transverse tip response to a random wave with significant wave height Hs ¼ 15m and constant end tension of

1252.5 tons: (a) axial tip displacement, (b) transverse tip displacement.
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5. Conclusions

A 1.27m beam model subjected to various end tension is analyzed. Next the response of a 260m tether with
constant end tension subjected to random wave loading is analyzed. Increasing the significant wave height
increases the amplitude of transverse response v whereas the amplitude of axial response is not affected
appreciably. The axial response u is mainly due to elongation and, as the end tension is kept constant, it does
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Fig. 19. Axial and transverse tip response of the tether for an axial forcing frequency of o ¼ 15 rad=s: (a) axial tip displacement,

(b) transverse tip displacement.
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not change significantly. The stress in the tower increases with the increase in significant wave height due to
increased transverse displacement.

The effect of increasing the end tension is investigated and the following observations were drawn:
�
 At zero end tension, the axial displacement is negative, as it is induced geometrically due to transverse
motion. Increase in tension causes elongation and produces a positive axial displacement. The absolute
value of total maximum axial displacement initially decreases when the end tension is increased from zero
to 1562.5 tons, but starts to increase with further increase in end tension.

�
 The transverse response of the tower with no end tension increases with time. Introducing an end tension

stabilizes the transverse response and also decreases the amplitude of displacement initially. At very high
end tensions the amplitude of transverse response increases slightly.

�
 The bending stress in the tether decreases due to lesser transverse displacement as the end tension increases

but the total stress in the tether initially decreases and then increases with increase in end tension due to
large axial stresses.

�
 The power spectral density plots show peaks at higher frequencies with increase in tether tension.

It was observed that when the end tension is varied, the magnitude of maximum transverse tip displacement
is reduced when compared to the transverse displacement of a tether with constant end tension. Also there is
considerable increase in the magnitude of the axial displacement in the case of varying end tension.

It was observed that as the axial forcing frequency is increased, only the axial response is affected. The
transverse response remains about the same. Thus it can be concluded that the surge amplitude is not affected
by the nonlinearity due to varying axial forces.
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